12,171 research outputs found

    Isoliquiritigenin, a Strong nod Gene- and Glyceollin Resistance- Inducing Flavonoid from Soybean Root Exudate

    Get PDF
    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms

    Electrical Detection of Coherent Nuclear Spin Oscillations in Phosphorus-Doped Silicon Using Pulsed ENDOR

    Full text link
    We demonstrate the electrical detection of pulsed X-band Electron Nuclear Double Resonance (ENDOR) in phosphorus-doped silicon at 5\,K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the 31^{31}P nuclear spins, where the 31^{31}P electron spins are detected electrically via spin-dependent transitions through Si/SiO2_2 interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.Comment: 5 pages, 3 figure

    An acoustic view of ocean mixing

    Get PDF
    Knowledge of the parameter K (turbulent diffusivity/"mixing intensity") is a key to understand transport processes of matter and energy in the ocean. Especially the almost vertical component of K across the ocean stratification (diapycnal diffusivity) is vital for research on biogeochemical cycles or greenhouse gas budgets. Recent boost in precision of water velocity data that can be obtained from vessel-mounted acoustic instruments (vmADCP) allows identifying ocean regions of elevated diapycnal diffusivity during research cruises - in high horizontal resolution and without extra ship time needed. This contribution relates acoustic data from two cruises in the Tropical North East Atlantic Oxygen Minimum Zone to simultaneous field observations of diapycnal diffusivity: pointwise measurements by a microstructure profiler as well as one integrative value from a large scale Tracer Release Experiment

    Temperature and frequency dependent optical properties of ultra-thin Au films

    Full text link
    While the optical properties of thin metal films are well understood in the visible and near-infrared range, little has been done in the mid- and far-infrared region. Here we investigate ultra-thin gold films prepared on Si(111)(7 x 7) in UHV by measuring in the frequency range between 500 cm-1 and 7000 cm-1 and for temperatures between 300 K and 5 K. The nominal thickness of the gold layers ranges between one monolayer and 9 nm. The frequency and temperature dependences of the thicker films can be well described by the Drude model of a metal, when taking into account classical size effects due to surface scattering. The films below the percolation threshold exhibit a non-metallic behavior: the reflection increases with frequency and decreases with temperature. The frequency dependence can partly be described by a generalized Drude model. The temperature dependence does not follow a simple activation process. For monolayers we observe a transition between surface states around 1100 cm-1.Comment: 7 pages, 10 figure
    • …
    corecore